1セル リチウムイオン／リチウムポリマ 二次電池用保護IC

MC3651 シリーズ

概要

MC3651シリーズは保護ICとMOS-FETを1つのパッケージに内蔵したリチウムイオン/リチウムポリマ 二次電池の保護用ICです。リチウムイオン/リチウムポリマ 電池1セルの過充電、過放電、放電過電流、短絡、充電過電流の検出が可能です。

特長

(1) 各種検出／復帰電圧の選択範囲と精度

- 過充電検出電圧4.15V~4.50V、5mVステップで選択可能精度±20mV
- 過充電復帰電圧4.00V~4.35V ※1 ...精度±50mV
- 過放電検出電圧2.00V~3.00V ※2 ..精度±100mV
- 過放電復帰電圧2.00V~3.00V ※2 ..精度±100mV
- 放電過電流検出電圧20mV~65mV、1mVステップで選択可能精度±5mV
- 充電過電流検出電圧-65mV~-25mV、1mVステップで選択可能精度±5mV
- 短絡検出電圧0.19V、0.36Vから選択可能 ...精度±50mV

(2) 各種検出遅延時間の選択範囲

- 過充電検出遅延時間1.0s 固定
- 過放電検出遅延時間100ms、256msから選択可能
- 放電過電流検出遅延時間8ms、12ms、16ms、20ms、48ms、224msから選択可能
- 充電過電流検出遅延時間8.5ms、16.5ms、32.5msから選択可能
- 短絡検出遅延時間0.50ms、0.75msから選択可能

(3) 0V電池への充電機能.....................「禁止」／「許可」の選択が可能 ※3

(4) 低消費電流

- 通常動作モード時......................Typ. 3.0µA、Max. 4.5µA
- スタンバイモード時.................Max. 0.1µA （過放電ラッチ機能「あり」の場合）
 Max. 0.5µA （過放電ラッチ機能「なし」の場合）

(5) MOS-FET

- ソース・ソース間抵抗............Typ. 65mΩ (@VDD=3.5V)

(6) 絶対最大定格

- VDD端子-0.3V ～ +12V
- V-端子VDD-24V ～ VDD+0.3V
- ドレイン・ソース間電圧Max. 24V
- ドレイン電流Max. 1.2A
- 許容損失Max. 0.4W
- 保存温度-40℃ ～ +125℃
- 動作周囲温度-40℃ ～ +85℃

※1 過充電検出/復帰電圧のヒステリシス電圧は、0.10V/0.15V/0.20V/0.25Vから選択可能です。
※2 過放電検出/復帰電圧の設定の詳細に関しては弊社までお問い合わせください。
※3 0V充電禁止の場合、設定電圧は0.65V/0.99Vから選択可能です。
※4 上記以外の仕様をご希望の場合は、弊社までお問い合わせください
MC3651 シリーズ

パッケージ

<table>
<thead>
<tr>
<th>端子番号</th>
<th>名称</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S1</td>
<td>負荷電源入力および放電MOS-FETソース端子。電池のマイナス側に接続します</td>
</tr>
<tr>
<td>2</td>
<td>VDD</td>
<td>正荷電源入力端子。R1を介して電池のプラス側に接続します</td>
</tr>
<tr>
<td>3</td>
<td>V−</td>
<td>充電器マイナス電位入力端子。R2を介してS2端子に接続します</td>
</tr>
<tr>
<td>4</td>
<td>S2</td>
<td>充電側MOS-FETのソース端子。充電器のマイナス側に接続します</td>
</tr>
<tr>
<td>-</td>
<td>D</td>
<td>充電および放電MOS-FETのドレイン端子です。電気的には開放にしてください</td>
</tr>
</tbody>
</table>

選択ガイド

<table>
<thead>
<tr>
<th>製品名</th>
<th>パッケージ</th>
<th>ボロス</th>
<th>0V</th>
<th>電池充電機能</th>
<th>過充電検出ラッチ機能</th>
<th>過放電検出ラッチ機能</th>
<th>過充電検出電圧</th>
<th>過充電復帰電圧</th>
<th>過放電検出電圧</th>
<th>過放電復帰電圧</th>
<th>放電過電流検出電圧</th>
<th>放電過電流遮断電流</th>
<th>充電過電流検出電圧</th>
<th>充電過電流遮断電流</th>
<th>ソース・ソース間オン抵抗</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC3651DF1AAM</td>
<td>PLP-4E 0.65V</td>
<td>○</td>
<td>4.280</td>
<td>4.180</td>
<td>2.700</td>
<td>2.700</td>
<td>-25.0</td>
<td>0.190</td>
<td>1.0</td>
<td>100.0</td>
<td>20.0</td>
<td>8.5</td>
<td>0.315</td>
<td>0.390</td>
<td>65.0</td>
</tr>
<tr>
<td>MC3651DF3AAM</td>
<td>PLP-4E 0.90V</td>
<td>×</td>
<td>4.265</td>
<td>4.065</td>
<td>3.000</td>
<td>3.000</td>
<td>20.0</td>
<td>-25.0</td>
<td>0.190</td>
<td>1.0</td>
<td>100.0</td>
<td>20.0</td>
<td>8.5</td>
<td>0.315</td>
<td>0.390</td>
</tr>
</tbody>
</table>

※ 1 ○：機能あり ×：機能なし

上記以外の製品をご希望の場合は、弊社までお問い合わせください。
応用回路例

<table>
<thead>
<tr>
<th>名称</th>
<th>部品</th>
<th>最小値</th>
<th>標準値</th>
<th>最大値</th>
<th>目的</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Resistor</td>
<td>-</td>
<td>330Ω</td>
<td>470Ω</td>
<td>電源電圧変動対策、ESD対策</td>
</tr>
<tr>
<td>C1</td>
<td>Capacitor</td>
<td>-</td>
<td>0.1µF</td>
<td>-</td>
<td>電源電圧変動対策</td>
</tr>
<tr>
<td>R2</td>
<td>Resistor</td>
<td>-</td>
<td>2.7kΩ</td>
<td>-</td>
<td>充電器逆接電流制限</td>
</tr>
<tr>
<td>C2</td>
<td>Capacitor</td>
<td>-</td>
<td>0.1µF</td>
<td>-</td>
<td>ノイズ対策</td>
</tr>
<tr>
<td>C3</td>
<td>Capacitor</td>
<td>-</td>
<td>0.1µF</td>
<td>-</td>
<td>ノイズ対策</td>
</tr>
</tbody>
</table>