Lithium-Ion Battery Charge Control IC Monolithic IC MM3439

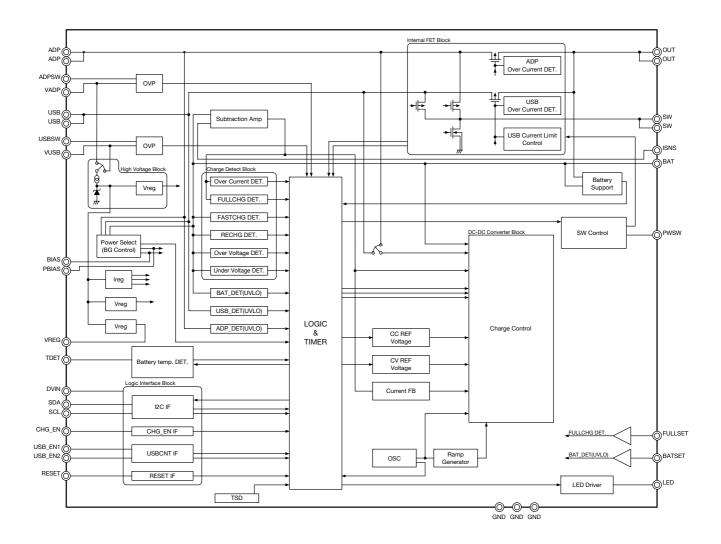
Outline

This IC is a Mitsumi has developed an IC that monitors 3 power supplies constituted by an AC adaptor, the USB port, and lithium ion secondary battery and controls the system drive power supply and the charging. The charging control is adapted to the battery temperature profile.

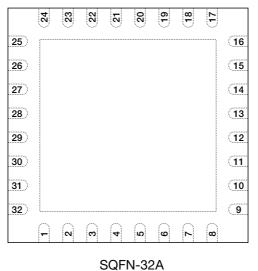
The IC is equipped with safe and highly efficient switch mode charging control to realize optimal power management for the mobile device.

Features

- 1. Built-in power switch for switching between AC adaptor/USB, and built-in charging control function. The IC controls the power supply from the AC adaptor, USB and lithium ion secondary battery.
- 2. The power supply is controlled to fit the charging temperature profile for safe and highly efficient charging. Thanks to control using I²C, the charging temperature profile can be altered.
- 3. The switch mode charge control format allows a large charging current (Max 2A) to be supported. The I²C control also allows changes to be made in 100 mA steps.


Package

SQFN-32A


Applications

- 1. Mobile phones
- 2. PDAs
- 3. Digital still cameras
- 4. Digital video cameras
- 5. Portable games
- 6. Portable music players

Block Diagram

Pin Assignment

(TOP VIEW)

1	ADP	17	ISNS
2	ADP	18	RESET
3	VADP	19	BAT
4	USB_EN1	20	TDET
5	SW	21	VREG
6	SW	22	BATSET
7	USB_EN2	23	FULLSET
8	ADPSW	24	GND
9	GND	25	LED
10	GND	26	USBSW
11	CHG_EN	27	VUSB
12	PBIAS	28	USB
13	BIAS	29	USB
14	SCL	30	PWSW
15	SDA	31	OUT
16	DVIN	32	OUT

Pin Description

Pin No.	Symbol	I/O	Function
1	ADP	Ι	Power supply input terminal that connects AC adaptor.
2		1	
3	VADP	Ι	Terminal for overvoltage protection (>5.7V) detection at the AC adaptor input.
4	USB_EN1	Ι	Current limitation control terminal of USB power SW. It controls with USB_EN2.
5 6	SW	0	Output terminal that connects inductor for charge buck DCDC converter.
7	USB_EN2	Ι	Current limitation control terminal of USB power SW. It controls with USB_EN1.
8	ADPSW	0	FET-drive terminal of AC adaptor external switch (Pch-MOSFET).
9	CND		
10	GND		Ground terminal.
11	CHG_EN	Ι	Charging enable input terminal.
12	PBIAS		Internal power supply stabilization terminal. The bypass capacitor is connected.
13	BIAS		Internal power supply stabilization terminal. The bypass capacitor is connected.
14	SCL	Ι	Clock input terminal for I ² C BUS.
15	SDA	I/0	Data I/O terminal for I ² C BUS.
16	DVIN	Ι	Power supply input terminal for logic I/F part.
17	ISNS	Ι	Input terminal for charge current detection. The high potential side of the sense resistance is connected.
18	RESET	Ι	Reset input terminal
19	BAT	Ι	Input terminal for detection of voltage of battery. Charge current detection input and using combinedly. The low potential side of the detection resistance is connected.
20	TDET	Ι	Input terminal for detection of battery temperature. The thermistor is connected.
21	VREG	0	Reference voltage output terminal for detection of battery temperature. 3.5Vtyp. is output.
22	BATSET	Ι	Set terminal of battery power that permits battery use. The voltage value is set by the breeder resistance between VREG-GND.
23	FULLSET	Ι	Set terminal of charge completion current. The voltage value is set by the breeder resistance between VREG-GND.
24	GND		Ground terminal.
25	LED	0	LED-drive terminal (Nch open drain output).
26	USBSW	0	FET-drive terminal of USB external switch (Pch-MOSFET).
27	VUSB	Ι	Terminal for input overvoltage protection detection (>5.7V) of USB.
28 29	USB	Ι	Power supply input terminal that connects USB.
30	PWSW	0	FET-drive terminal of external power switch (Pch-MOSFET).
31 32	OUT	0	Power supply output terminal for system.

Pin No. Pin No. Pin name Equivalent circuit diagram Pin name Equivalent circuit diagram ADP 12 PBIAS 1 OUT PBIAS 2 Ο -O 11 sw -O USB ≶ BAT ≶ O-GND O-GND VADP BIAS 3 13 ADP BIAS Ð О О Δ BAT O-GND O-GND USB_EN1 SCL 4 14 DVIN Ô SCL USB_EN1 \bigcirc O-GND O-GND SW 15 SDA 5 SW 6 \supset USB SDA O \wedge O-GND 7 USB_EN2 DVIN 16 DVIN DVIN \bigcirc USB_EN2 (Л Ż O-GND O-GND ADPSW ISNS 8 17 VADP С ADPSW -0 Δ O-GND O-GND 11 CHG_EN 18 RESET CHG_EN RESET ۱۸/ O-GND O-GND

Pin Description

Pin No.	Pin name	Equivalent circuit diagram	Pin No.	Pin name	Equivalent circuit diagram
19	BAT	BAT GND	26	USBSW	VUSB USBSW GND
20	TDET	TDET GND	27	VUSB	VUSB
21	VREG	VREG GND	28 29	USB	USB OUT SW OUT SW OUT SW OUT SW OUT SW OUT SW OUT
22	BATSET	BATSET	30	PWSW	BIAS PWSW GND
23	FULLSET	FULLSET	31 32	OUT	ADP USB USB
25	LED				GND

	Item	Symbol	Ratings	Units
Storag	ge temperature	Tstg	-55~+150	°C
Operat	ing temperature	TOPRMAX	-35~+85	°C
VADP, ADPSW, VUSB, USBSW pin input voltage		VHinmax	-0.3~+30	V
Other p	Other pin input voltage		-0.3~+6	V
ADP, USE	3 pin input current	IIN _{MAX}	1.5	А
LED p	in sink current	ILEDMAX	20	mA
Power	IC unit	Pd1	0.35	W
dissipation	Substrate mounting(*1)	Pd2	2.5 2.0 (* 2)	W

Absolute Maximum Ratings (Except where noted otherwise Ta=25°C)

note : \star 1 Board size : 90 × 90 × 1.6mm Material : grass epoxy Layer : double side Wire rate : 90% note : \star 2 When the back heat spreader unmounting.

Recommended Operating Conditions

Item	Symbol	Ratings	Units
Operating temperature	Topr	-20~+75	°C
ADP, USB Operating voltage	VDD	4.5~5.5	V
BAT Operating voltage	BAT	1.05~4.25	V
DVIN Operating voltage	DVIN	1.5~5.5	V
Logic I/F block pin input voltage (*3)	LOGICIF	0~DVIN	V
BATSET pin input voltage	BATSET	1.0~2.0	V
FULLSET pin input voltage	FULLSET	0.6~1.2	V
ADP, USB pin input current	IIN	0~2.0	А

note : *3 SDA, SCL, CHG_EN, USB_EN1, USB_EN2, RESET pin

Electrical Characteristics 1

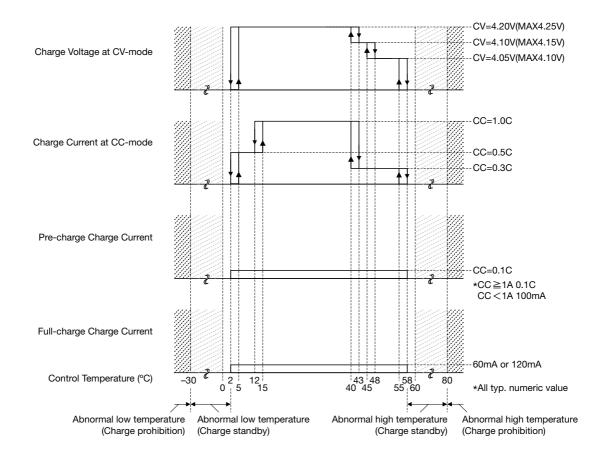
(Except where noted otherwise Ta=25°C, ADP=USB=5.0V)

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
Consumption current 1	ICC	ADP mode, USB mode		1.5	3.0	mA
Consumption current 2	ICCBTM	BAT mode		30	50	μA
VREG pin output voltage	VREG		3.4	3.5	3.6	V
VREG pin output current ability	IREG		2			mA
ADP/USB UVLO (V _{UVLO} <psm)< th=""><th>V_{UVLO}</th><th>ADP/USB=H→L</th><th>4.1</th><th>4.2</th><th>4.3</th><th>v</th></psm)<>	V _{UVLO}	ADP/USB=H→L	4.1	4.2	4.3	v
ADP/USB UVLO hysteresis voltage width (*4)	Vuvlow	ADP/USB=L→H	50	100	150	mV
ADP/USB supply voltage control (VuvLo <psm)< th=""><th>PSM</th><th>ADP/USB=H→L</th><th>4.2</th><th>4.3</th><th>4.4</th><th>v</th></psm)<>	PSM	ADP/USB=H→L	4.2	4.3	4.4	v
BAT UVLO	BATuvlo	BAT=H→L BATSET=1.5V	TYP -0.1	BATSET ×2	TYP +0.1	v
BAT UVLO hysteresis voltage width (*4)	BATuvlow	BAT=L→H BATSET=1.5V	30	85	140	mV
VADP/VUSB OVP	Vvddh	VADP/VUSB=L→H	5.5	5.7	5.9	V
VADP/VUSB OVP hysteresis voltage width (*4)	Vvddhw	VADP/VUSB=H→L	50	100	150	mV
	I _{USB} 1	USB_EN1=H, USB_EN2=L OUT=3.6V	60	80	100	
Current limit of USB pass	I _{USB} 2	USB_EN1=L, USB_EN2=H OUT=3.6V	420	460	500	mA
	Iusb2	USB_EN1=H, USB_EN2=H Only I ² C mode, OUT=3.6V	800	850	900	
ADP overcurrent detection (*4)	Iadpmax			2.5		A

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
USB overcurrent detection (*4)	IUSBMAX			2.5		Α
Forced charge current range	IFRCCHG	RSNS=0.2Ω(* 6)	100		200	mA
Forced charge current accuracy	Afrechg	RSNS=0.2Ω IFRCCHG=180mA(* 6)	-40		+40	%
Pre-charge current range	IPRECHG	RSNS=0.2Ω(* 6)	100		200	mA
Pre-charge current accuracy	Aprechg	RSNS=0.2Ω IPRECHG=180mA(* 6)	-30		+30	%
Fast charge current range	IFSTCHG	RSNS=0.2Ω(*6)	100		2000	mA
Fast charge current accuracy	Afstchg	RSNS=0.2Ω IFSTCHG=1800mA(* 6)	-5		+5	%
Detect full charge current range	IDETFULL	RSNS= 0.2Ω , I ² C bus default	120		240	mA
Detect full charge current accuracy1	Adetfull	RSNS=0.2Ω, I²C bus default FULLSET=0.6V IDETFULL=120mA	-30		+30	%
Detect full charge current accuracy2	Adetfull	RSNS=0.2Ω, at I ² C bus control FULLSET=0.6V IDETFULL=60mA, 240mA	-50		+50	%
BAT pin current of overcurrent detection	Інс	RSNS=0.2Ω		2.5		А
BAT pin over discharge voltage detection	V _{LV}	BAT=H→L	0.95	1.05	1.15	V
BAT pin voltage of precharge detection	VP	BAT=L→H	2.8	2.9	3.0	V
Hysteresis voltage width of pre-charge detection (*4)	Vpw		25	50	100	mV

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
BAT pin voltage for CV control (VBat1>VBat2>VBat3)	VBAT1	$VT_2 < TDET \leq VT_5$	4.17	4.20	4.23	
	VBAT2	$VT_5 < TDET \leq VT_6$	4.05	4.10	4.15	V
	VBAT3	$VT_5 < TDET \leq VT_6$	4.00	4.05	4.10	
BAT pin voltage of re-charge detection	VR	BAT=H→L	3.85	3.90	3.95	V
BAT pin voltage of overvoltage detection	Vov	BAT=L→H	4.30	4.35	4.40	V
	V _{T1}	TDET=L \rightarrow H -30°C±6°C detection	VREG ×0.893	VREG ×0.919	VREG ×0.940	V
	V _{T2}	TDET=L \rightarrow H 2°C±2°C detection	VREG ×0.697	VREG ×0.714	VREG ×0.731	V
	V _{T3}	TDET=L→H 12°C±2°C detection	VREG ×0.604	VREG ×0.623	VREG ×0.642	v
Battery temperature detection TDET pin voltage (*5)	V_{T4}	TDET=H→L 43°C±2°C detection	VREG ×0.330	VREG ×0.345	VREG ×0.360	v
	V _{T5}	TDET=H→L 48°C±2°C detection	VREG ×0.294	VREG ×0.308	VREG ×0.322	V
	V _{T6}	TDET=H→L 58°C±2°C detection	VREG ×0.232	VREG ×0.243	VREG ×0.255	v
	V _{T7}	TDET=H→L 80°C±6°C detection	VREG ×0.124	VREG ×0.143	VREG ×0.165	v
Hysteresis voltage width of battery temp. detection (*4)	VVTHW	VT2, VT3, VT4, VT5, VT6	1	3	5	°C
LED pin output voltage	VLED	ILED=10mA			0.4	V
LED pin sink current	ILED		10			mA
ADP power SW ON resistance (*4)	ADPRON	ADP=5.0V			0.3	Ω
USB power SW ON resistance (*4)	USBRON	USB=5.0V			0.3	Ω

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
Oscillator frequency	fosc		0.8	1.0	1.2	MHz
First time delay	T1STINT		102.4	128.0	153.6	ms
BAT pull time	TDISTCHG		102.4	128.0	153.6	ms
Forced charge time	T1STCHG		204.8	256.0	307.2	ms
Voltage detection delay	TVdetect		102.4	128.0	153.6	ms
Pre-charge safety timer	TPRECHG	I ² C bus default	5760	7200	8640	s
Fast charge safety timer	TFSTCHG	I ² C bus default	37440	46800	56160	s
Full charge detection delay time	TDETFULL		336.0	448.0	560.0	ms
Re-charge detection delay time	Tr		42.0	56.0	70.0	ms
BAT pin current of overcurrent detection delay time	Інс		42.0	56.0	70.0	ms
BAT pin over discharge voltage detection delay time	V_{LV}		42.0	56.0	70.0	ms
BAT pin overvoltage detection delay time	Tov		42.0	56.0	70.0	ms
ADP/USB overcurrent detection delay time (*4)	Toc		42.0	56.0	70.0	ms
ADP/USB/BAT under voltage lockout delay time	Tuv		84.0	112.0	140.0	ms
Temp. detection delay time	TTDET		42.0	56.0	70.0	ms


Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
	T _{BL1}	When blinking (0.25Hz) is set	0.200	0.250	0.300	
	TBL2	When blinking (0.5Hz) is set	0.400	0.500	0.600	
LED blinking cycle	T _{BL3}	When blinking (1Hz) is set	0.800	1.000	1.200	Hz
LED billiking cycle	TBL4	When blinking (2Hz) is set	1.600	2.000	2.400	пг
	TBL5	When blinking (4Hz) is set	3.200	4.000	4.800	
	T _{BL6}	When blinking (8Hz) is set	6.400	8.000	9.600	
CHG_EN "L"-level input voltage	VCEL		0		0.3	V
CHG_EN "H"-level input voltage	Vceh		DVIN -0.3		DVIN	v
CHG_EN pin input current	Ice	DVIN=1.8V H input			2.5	μА
USB_EN1 "L"-level input voltage	VUSB1L		0		0.3	V
USB_EN1 "H"-level input voltage	VUSB1H		DVIN -0.3		DVIN	v
USB_EN1 pin input current	I _{USB1}	DVIN=1.8V H input			2.5	μΑ
USB_EN2 "L"-level input voltage	V _{USB2L}		0		0.3	V
USB_EN2 "H"-level input voltage	Vusb2h		DVIN -0.3		DVIN	v
USB_EN2 pin input current	I _{USB2}	DVIN=1.8V H input			2.5	μA
RESET "L"-level input voltage	VRSTL		0		0.3	V
RESET "H"-level input voltage	VRSTH		DVIN -0.3		DVIN	V
RESET pin input current	Irst	DVIN=1.8V H input			2.5	μΑ

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
Temperature of chip temperature limiting1 (*4)	TCL1	at I ² C bus control	75	85	95	°C
Temperature of chip temperature limiting2 (*4)	TCL2	I ² C bus default	125	135	145	°C
Temperature of thermal shutdown (*4)	TSD		140	150	160	°C
Hystereisis temperature of thermal shutdown (*4)	TSDh			25		°C

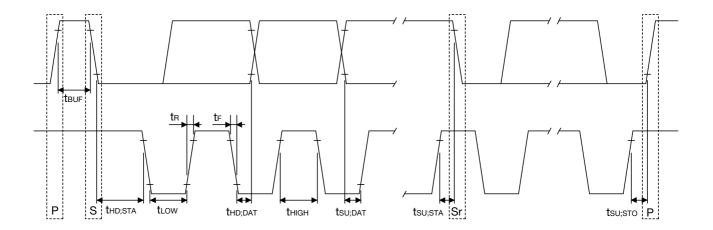
note : *4 guaranteed by design

note : *5 Temperature detection is the setting value at B-Value 3380K (25/50°C)(NCP15XH103F03RC made by MURATA MANUFACTURING).

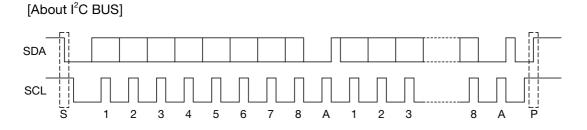
The battery temperature profile (I²Cbus is default) when this thermistor use is a figure below.

note : *6 About the range and accuracy to be able to set the charging current.

When RSNS is 0.2Ω , the Forced charge current, the pre-charge current, and the fast charge current are the relations of the table below. It is possible to select No. according to the I2C control. Accuracy excluding No.18 becomes a design certification.


No.	Forced charge current	Pre-charge current	Fast charge current
1	100mA ± 40%	100mA ± 40%	100mA ± 40%
2	100mA ± 40%	100mA ± 40%	200mA ± 30%
3	100mA ± 40%	100mA ± 40%	300mA ± 20%
4	100mA ± 40%	100mA ± 40%	400mA ± 15%
5	100mA ± 40%	100mA ± 40%	500mA ± 15%
6	100mA ± 40%	100mA ± 40%	600mA ± 10%
7	100mA ± 40%	100mA ± 40%	700mA ± 10%
8	100mA ± 40%	100mA ± 40%	800mA ± 10%
9	100mA ± 40%	100mA ± 40%	900mA ± 7.5%
10	100mA ± 40%	100mA ± 40%	1000mA ± 7.5%
11	110mA ± 40%	110mA ± 30%	1100mA ± 7.5%
12	120mA ± 40%	120mA ± 30%	1200mA ± 7.5%
13	130mA ± 40%	130mA ± 30%	1300mA ± 5%
14	140mA ± 40%	140mA ± 30%	1400mA ± 5%
15	150mA ± 40%	150mA ± 30%	1500mA ± 5%
16	160mA ± 40%	160mA ± 30%	1600mA ± 5%
17	170mA ± 40%	170mA ± 30%	1700mA ± 5%
18	180mA ± 40%	180mA ± 30%	1800mA ± 5%
19	190mA ± 40%	190mA ± 30%	1900mA ± 5%
20	200mA ± 40%	200mA ± 30%	2000mA ± 5%

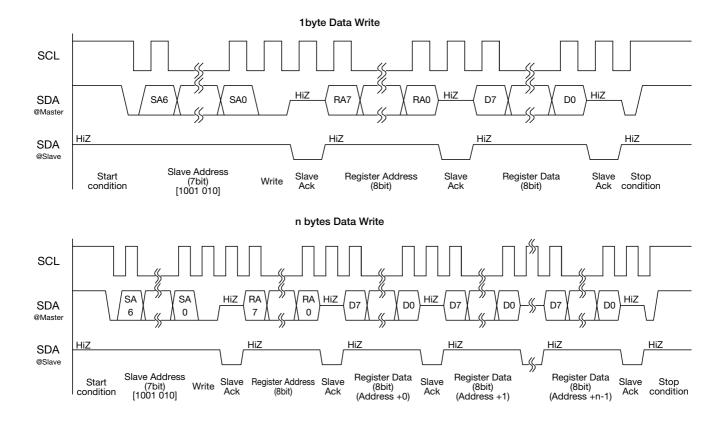
note : If the IC is damaged and control is no longer possible, its safety can not be guaranteed. Please protect with something other than this IC.


note : If adjacent terminals are shorted or each terminal is short with VDD or GND, there is a possibility that the IC malfunctions.

Electrical Characteristics 2 (Except where noted otherwise Ta=25°C, ADP=USB=5.0V)

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
[l ² C condition]						
Input voltage L	VIL		0		DVIN ×0.3	v
Input voltage H	Vih		DVIN ×0.7		DVIN	v
SDA low level output voltage	Vol	SDA sink 3mA	0		0.4	V
High level input current	I _{IH}	SDA, SCL=4.5V	-10		10	μA
Low level input current	IIL	SDA, SCL=0.4V	-10		10	μA
Clock frequency	fscl				400	kHz
Data transfer wait time	tbuf		1.3			μs
SCL start hold time	thd; sta		0.6			μs
SCL low level hold time	tLOW		1.3			μs
SCL high level hold time	thigh		0.6			μs
Start condition setup	t su; sta		0.6			μs
SDA data hold time	thd; dat		0			μs
SDA data setup time	tsu; dat		100			ns
SDA,SCL rise time	tr				300	ns
SDA,SCL fall time	tF				300	ns
Stop condition setup time	tsu; sto		0.6			μs

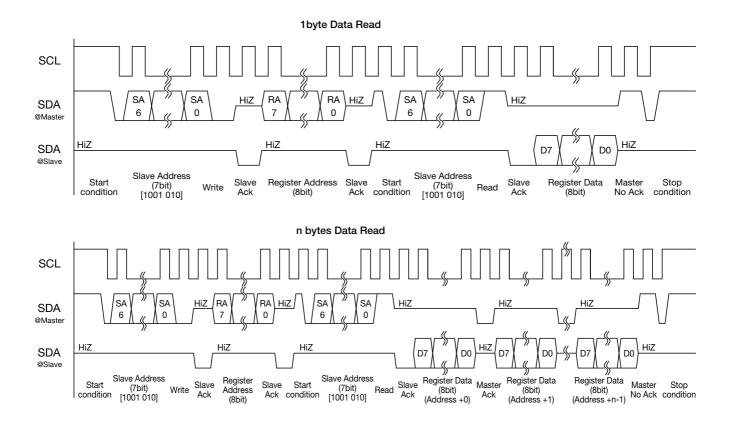
I²C BUS



I²C BUS is inter bus system controlled by 2 lines (SDA,SCL).

Data are transmitted and received in the units of byte and Acknowledge. It is transmitted by MSB first from the Start condition.

[Control registers]


Control registers are data sent from the master for determining the conditions. The data format is set as shown in the following figure.

Out of the Address byte, first 7 bit are assigned to the slave address, while the residual 1 bit is assigned to the R/W bit. Set the R/W bit to 0 when data are used control registers. The address of this IC is 94H. Please refer to "Register map" for the control contents of control registers and switches.

[Status registers]

Status registers are data to inform the master of the IC status. The data format is set as shown in the following figure.

Out of the Address byte, first 7 bit are assigned to the slave address, while the residual 1 bit is assigned to the R/W bit. Set the R/W bit to 1 when data are used status registers. The address of MM3439 is 95H. Please refer to "Register map" for the control contents of control registers and switches.

[About the control terminal]

CHG_EN(11pin), USB_EN1(4pin), USB_EN2(7pin) and RESET(18pin) are terminals that input H signal (DVIN) or L signal (GND) to decide the state of MM3439. As for the content controlled with these control terminals, the thing controlled by using I²C BUS is possible.

Please refer to "Control table" for the relation between the control terminal and I²C BUS.

[Register map]

		b07	b06	b05	b04	b03	b02	b01	b00	Remarks
	ave Iress	1	0	0	1	0	1	0	R/W	R=1 W=0
	00h		Ch	arging stat	tus	ıs Charge error				
	01h		Мо	ode distinct	ion	Temperature of battery				D 1 1
	02h	State	of each terr	ninal conn	ection	ction State of power pass SW				Read only
	03h		Full charge	e detection		/USB existence	Each mode transition prohibition			
	04h	CHG_EN		USB_EN						
dress	05h	ADP/USB Priority	2~12 CV se							
Register Address	06h	RESET	12~4 CV se])				
Reç	07h	Re-charge	43~4 CV se		4)	Read/Write			
	08h	Supply voltage control	48~5 CV se		2					
	09h	LED dis	play when o	charging						
	0Ah	LED displa	ay when temp	stands by	-)				
	0Bh	LED displa	y when batter	y abnormal	2)				
	0Ch	LED disp	lay when ful	l charged)				
	F0h				Test	mode				Use
	F1h				Test	mode				prohibition
	F2h				Test	mode				usually

Control table

Register Address : 00H

b06	b05	b04	Charging status
0	0	0	Charge OFF
0	0	1	Battery connection judging
0	1	0	Pre-charge
0	1	1	Fast charge
1	0	0	Full charge
1	0	1	Re-charge

Register Address : 00H

b02	b01	b00	Charge error
0	0	0	No error
0	0	1	Pre-charge time-out
0	1	0	Fast charge time-out
0	1	1	Overvoltage of battery
1	0	0	Battery overdischarge
1	0	1	Battery overcurrent
1	1	0	The battery temp. is abnormal
1	1	1	Thermal shutdown

Register Address : 01H

b06	b05	b04	Mode distinction
0	0	0	Standby
0	0	1	ADP mode
0	1	0	USB mode
0	1	1	BAT mode
1	0	0	ADP charge mode
1	0	1	USB charge mode
1	1	0	USB-BAT common mode

Register Address : 01H

b02	b01	b00	Temperature of battery
0	0	0	~-30°C
0	0	1	-30~2°C
0	1	0	2~12°C
0	1	1	12~43°C
1	0	0	43~48°C
1	0	1	48~58°C
1	1	0	58~80°C
1	1	1	80°C ~

Register Address : 02H - State of each terminal connection

b07	ADP connection	b06	USB connection	b05	Battery B+	b04	Battery TH
0	None	0	None	0	None	0	None
1	Connects	1	Connects	1	Connects	1	Connects

Register Address : 02H - State of power SW

b01	ADP voltage	b00	USB voltage
0	No error	0	No error
1	Overvoltage	1	Overvoltage

Register Address : 03H - Full charge detection setting

b06	b05	Setting of full charge detect
0	0	1time FULLSET
0	1	* <u>Two time FULLSET</u>
1	0	Four time FULLSET
1	1	Prepositive holding

Register Address : 03H - ADP/USB charge existence

b04	ADP charge Presence	bC	03	USB charge Presence
0	ADP non-charge	0	0	USB non-charge
1	ADP charge	1	1	USB charge

Register Address : 03H - Each mode transition prohibition

b02	Battery use mode	b
0	Transition permission	(
1	Transition prohibition	

b01	ADP use mode	
0	Transition permission	
1	Transition prohibition	

b00	USB use mode			
0	Transition permission			
1	Transition prohibition			

Register Address : 04H

b07	CHG_EN				
0	* Charge prohibition				
1	Charge permission				

Register Address : 04H

b06	b05	b04	USB_EN
0	0	0	* <u>USB use prohibition</u>
0	0	1	100mA limitation
0	1	0	500mA limitation
0	1	1	900mA limitation
1	0	0	Unrestricted (overcurrent protection)
1	0	1	Prepositive holding
1	1	0	Prepositive holding
1	1	1	Prepositive holding

Register Address : 04H

b03	b02	Chip temperature limiting
0	0	No control
0	1	85°C
1	0	* <u>135°C</u>
1	1	Prepositive holding

Register Address : 04H

b01	b00	Setting of internal timer
0	0	0.25 times
0	1	0.5 times
1	0	* <u>one times</u>
1	1	Timer reset

Register Address : $05H - 2 \sim 12^{\circ}C$ CV Setting Register Address : $06H - 12 \sim 43^{\circ}C$ CV Setting Register Address : $07H - 43 \sim 48^{\circ}C$ CV Setting Register Address : $08H - 48 \sim 58^{\circ}C$ CV Setting

b06	b05	CV Setting
0	0	4.20V
0	1	4.10V
1	0	4.05V
1	1	Prepositive holding

Register Address : 05H

b07	ADP/USB priority
0	USB priority
1	* <u>ADP priority</u>

* Refer to the profile of temperature of battery for the default value of CV setting.

Register Address : 06H

b07	RESET				
0	* <u>Release RESET</u>				
1	RESET				

Register Address : 07H

b07	Re-charge			
0	Re-charge permission			
1	* <u>Re-charge prohibition</u>			

Register Address : 08H

b07	Supply voltage control			
0	No control			
1	* <u>Supply voltage control</u>			

Register Address : 05H - 2 ~ 12°C CC setting (ADP charge) Register Address : 06H - 12 ~ 43°C CC setting (ADP charge) Register Address : 07H - 43 ~ 48°C CC setting (ADP charge) Register Address : 08H - 48 ~ 58°C CC setting (ADP charge) Register Address : $09H - 2 \sim 12^{\circ}C$ CC setting (USB charge) Register Address : $0AH - 12 \sim 43^{\circ}C$ CC setting (USB charge) Register Address : $0BH - 43 \sim 48^{\circ}C$ CC setting (USB charge) Register Address : $0CH - 48 \sim 58^{\circ}C$ CC setting (USB charge)

	CC setting	b00	b01	b02	b03	b04
	0mA (Charge OFF)	0	0	0	0	0
	100mA	1	0	0	0	0
	200mA	0	1	0	0	0
	300mA	1	1	0	0	0
	400mA	0	0	1	0	0
	500mA	1	0	1	0	0
	600mA	0	1	1	0	0
	700mA	1	1	1	0	0
	800mA	0	0	0	1	0
	900mA	1	0	0	1	0
	1000mA	0	1	0	1	0
]	1100mA	1	1	0	1	0
1	1200mA	0	0	1	1	0
]	1300mA	1	0	1	1	0
	1400mA	0	1	1	1	0
]	1500mA	1	1	1	1	0
]	1600mA	0	0	0	0	1
7	1700mA	1	0	0	0	1
	1800mA	0	1	0	0	1
	1900mA	1	1	0	0	1
1	2000mA	0	0	1	0	1
11	0.5times setting of 12~43°C	1	0	1	0	1
-	0.3times setting of 12~43°C	0	1	1	0	1
	0.1times setting of 12~43°C	1	1	1	0	1
]	Prepositive holding	0	0	0	1	1
]	Prepositive holding	1	0	0	1	1
1	Prepositive holding	0	1	0	1	1
1	Prepositive holding	1	1	0	1	1
]	Prepositive holding	0	0	1	1	1
]	Prepositive holding	1	0	1	1	1
]	Prepositive holding	0	1	1	1	1
1	Prepositive holding	1	1	1	1	1

Register Address 06H/0AH is prepositive holding.

* Refer to the profile of temperature of battery for the default value of CC setting.

* The value of the current of the above table is a value at the sense resistance 0.2Ω .

Register Address : 09H

b07	b06	b05	LED display when charging
0	0	0	Turning off
0	0	1	Blinking (0.25Hz)
0	1	0	* <u>Blinking (0.5Hz)</u>
0	1	1	Blinking (1Hz)
1	0	0	Blinking (2Hz)
1	0	1	Blinking (4Hz)
1	1	0	Blinking (8Hz)
1	1	1	Lighting

Register Address : 0AH

b07	b06	b05	LED display temperature standby
0	0	0	Turning off
0	0	1	* <u>Blinking (0.25Hz)</u>
0	1	0	Blinking (0.5Hz)
0	1	1	Blinking (1Hz)
1	0	0	Blinking (2Hz)
1	0	1	Blinking (4Hz)
1	1	0	Blinking (8Hz)
1	1	1	Lighting

Register Address : 0BH

b07	b06	b05	LED display when abnormal battery
0	0	0	Turning off
0	0	1	Blinking (0.25Hz)
0	1	0	Blinking (0.5Hz)
0	1	1	Blinking (1Hz)
1	0	0	* <u>Blinking (2Hz)</u>
1	0	1	Blinking (4Hz)
1	1	0	Blinking (8Hz)
1	1	1	Lighting

Register Address : 0CH

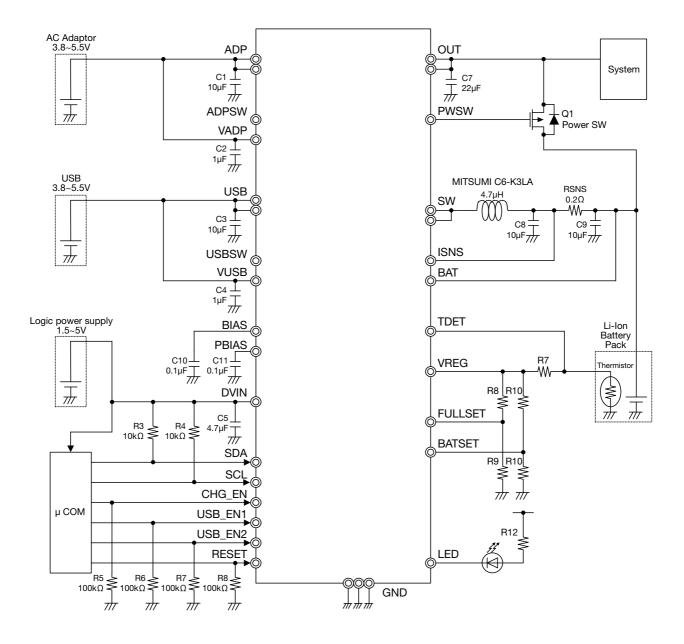
b07	b06	b05	LED display when full charge
0	0	0	* <u>Turning off</u>
0	0	1	Blinking (0.25Hz)
0	1	0	Blinking (0.5Hz)
0	1	1	Blinking (1Hz)
1	0	0	Blinking (2Hz)
1	0	1	Blinking (4Hz)
1	1	0	Blinking (8Hz)
1	1	1	Lighting

Control table of control terminal and I²C control using together

Control terminal	I ² C Control	
CHG_EN (11pin)	CHG_EN (04h_b07)	Charge permission control
L	0	Charge prohibition
Н	*	Charge permission
*	1	Charge permission

(*: Don't care)

Control terminal			
USB_EN1 (4pin)	USB_EN2 (7pin)	l ² C Control USB_EN (04h_b06~b04)	
L	L	USB use prohibition. I ² C Control is invalid.	
Н	L	USB current limitation value is 100mA. I ² C Control is invalid.	
L	Н	USB current limitation value is 500mA. I ² C Control is invalid.	
Н	Н	I ² C Control is effective. USB current limitation automatic operation change is effective.	


Control terminal	I ² C Control		
RESET (18pin)	RESET (06h_b07)	Reset control	
L	0	Reset release	
Н	*	Reset	
*	1	Reset	

(* : Don't care)

Application Circuit

(1) When use input OVP and the reverse-connected prevention circuit.

(2) Input OVP and the prevention circuit of reverse-connection for unused.

- These circuits are typical examples provided for reference purposes, so in actual applications, the circuit constants, conditions and operations should be thoroughly studied.
- Mitsumi Electric Co., Ltd. assumes no responsibility for any trouble or damage as a result of the use of these circuits.
- Mitsumi Electric Co., Ltd. assumes no responsibility for any infringement of industrial property or any other right of a third party or us, as a result of the use of these circuits.