HBS-Compatible Driver and Receiver with Power Supply Monolithic IC MM1034

Outline

This IC conforms to the HBS (Home Bus) specification, and has functions for reception and transmission of data. It incorporates a power supply circuit which employs a highly efficient switching regulator, allowing a direct power supply from the bus line. AMI is adopted for the waveforms of signals handled by the transmission and reception units, designed for connection to twisted-pair lines.

It connects a wide range of equipment such as telephone equipment, security devices, audio or video equipment, and air-conditioning equipment to a bus line to enable mutual communication between SCONTINUÉ equipment.

Features

- 1. Space saving
- 2. High reliability
- 3. Replaces pulse transformers
- 4. Low cost
- 5. Adopts a highly efficient switching regulator
- 6. Easy circuit design
- 7. Includes a stable power supply circuit (Vo1=5 V ±0.25)
- 8. Few external components

Applications

- 1. Telephone equipment
- 2. Security devices
- 3. Audio and video equipment
- 4. Air-conditioning equipment
- 5. A wide range of other equipment and devices

Packages

DIP-16A (MM1034XD) SOP-16A (MM1034XF)

Block diagram

Absolute Maximun Ratings (Ta=25°C)

Item	Symbol	Ratings	Units	
Storage temperature	Тѕтс	-40~+125	$^{\circ}$ C	
Operating temperature	Торг	-20~+75	°C	
Power supply current	Vcc max.	-0.3~+46	V	
Operating power supply voltage	Vссор	13~45	V	
Allowable loss	Pd	400	mW	

Electrical Characteristics (Except where noted therwise, Ta=25°C, Vcc=30V, Ftransmit=10kHz (DUTY=50%))

	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
SWR	Output voltage	Vo1	Vcc1=15~45V, IL=0~250mA	4.75	5.00	5.25	V
	Output voltage	Vo2	Vcc1=13~45V, IL=0~250mA	4.70	5.00	5.25	V
	Output voltage	Vo2	Vcc1=11~45V, IL=0~100mA	4.75	5.00	5.25	V
	Output ripple voltage	Vr	I _L =250mA, no spikes			50	mV
	Reactive current	Iccq	IL=0mA, transmit unit off		4	6	mA
	SWR transmission	Fosc	215		80		kHz
	frequency	FOSC			80		KIIZ
	Power supply current	Iss	Rs=0.2Ω		7.5	12	mA
	on short-circuit	113	RS=0.222		7.5	12	1111/1
	Output current	Ios	Rs=0.2Ω	70	110	150	mA
	on short-circuit						
	Transmission output voltage	V ₇₀	Both pins 8 and 9	3.8	4.2	4.6	V _{P-P}
Transmission circuit	Transmission	VTR	Vro1/Vro2	0.75	1.0	1.25	
	waveform symmetry						
	Reception sensitivity	Vrs		0.65	0.75	0.85	V _{P-P}
	Noise resistance	Vrn	Level at which no errors are output	0.55			V _{P-P}
	Input impedance	Rin	Both pins 11 and 12	25	36	46	kΩ
	Transmission delay time 1	Td1	cf. transmit/receive waveform diagrams		0.2		μs
	Transmission delay time 2	Td2	cf. transmit/receive waveform diagrams		0.4		μs
	Transmission delay time 3	Td3	cf. transmit/receive waveform diagrams		0.7		μs
	Transmission delay time 4	Td4	cf. transmit/receive waveform diagrams		1.0		μs
	Reception output H voltage			4.5			V
	Reception output L voltage	Vrol				0.5	V
	Transmission waveform LOSS 1	VTLS	V _T =5V applied, power on	4.5			V
	Transmission waveform LOSS 2	VTLS	applied, power off	4.5			V
	H level input voltage	VLIH		2.4			V
	L level input voltage	VLIL				0.8	V
	H level input current	Ilih	$V_{IN}=2.4V$			10	μA
	L level input current	Ilil	$V_{IN}=0.4V$			300	μA

When a negative voltage is applied to pins 8 and 9, there should be no abnormal operation of internal circuits between 0 and 6V. However, if a negative voltage exceeding -6V is applied, thyristor operation may result, so it is recommended that an external clamping diode be added.

Measuring Circuit

Measurement circuit 1

2SA1213(Y)

IS2348H

±47μ F/60V

2.4V/0.8V

Application Circuits

Additional Application Circuits (SWR circuit not used)

Even when a 5V external voltage can be supplied, an addition voltage of 13 to 45V must be applied to pins 2 and 3 in order to obtain an internal biased power supply of 3.4V.

Circuit Diagram

Characteristics

Vout vs. lo

